初等数学回忆录
坐标系
极坐标
$$ \begin{cases} x = \rho\cos\theta \\ y = \rho\sin\theta \end{cases} \qquad \begin{cases} \rho^2 = x^2+y^2 \\ \tan\theta = \frac{y}{x}\ (x\neq 0) \end{cases} $$由上式即可完成坐标系互换。(常用技巧比如两边同时乘 $\rho$ 等在此不表)
三角函数
三角恒等式
倒数关系:
$$\tan\alpha \cdot \cot\alpha = 1$$$$\sin\alpha \cdot \csc\alpha = 1$$$$\cos\alpha \cdot \sec\alpha = 1$$商数关系:
$$\tan\alpha = \frac{\sin\alpha}{\cos\alpha}$$$$\cot\alpha = \frac{\cos\alpha}{\sin\alpha}$$平方关系:
$$\sin^2\alpha + \cos^2\alpha = 1$$$$1 + \tan^2\alpha = \sec^2\alpha$$$$1 + \cot^2\alpha = \csc^2\alpha$$诱导公式
符号看象限,各函数在不同象限的正负:
- 第一象限 (0 to $\frac{\pi}{2}$): All positive ($\sin\alpha, \cos\alpha, \tan\alpha > 0$)
- 第二象限 ($\frac{\pi}{2}$ to $\pi$): Sine positive ($\sin\alpha > 0, \cos\alpha < 0, \tan\alpha < 0$)
- 第三象限 ($\pi$ to $\frac{3\pi}{2}$): Tangent positive ($\sin\alpha < 0, \cos\alpha < 0, \tan\alpha > 0$)
- 第四象限 ($\frac{3\pi}{2}$ to $2\pi$): Cosine positive ($\sin\alpha < 0, \cos\alpha > 0, \tan\alpha < 0$)
“奇变偶不变,符号看象限” (对于 $k\frac{\pi}{2} \pm \alpha$ 的形式, $k$ 为整数)
- $k$ 为偶数时,函数名不变。
- $k$ 为奇数时,$\sin \leftrightarrow \cos$, $\tan \leftrightarrow \cot$, $\sec \leftrightarrow \csc$。
- 符号由原函数在 $\alpha$ 视为锐角时, $k\frac{\pi}{2} \pm \alpha$ 所在象限的原函数符号决定。
常用公式(自行练习):
-
$\sin(2k\pi + \alpha) = \sin\alpha$
-
$\cos(2k\pi + \alpha) = \cos\alpha$
-
$\tan(2k\pi + \alpha) = \tan\alpha$
-
$\cot(2k\pi + \alpha) = \cot\alpha$
-
$\sin(\pi + \alpha) = -\sin\alpha$
-
$\cos(\pi + \alpha) = -\cos\alpha$
-
$\tan(\pi + \alpha) = \tan\alpha$
-
$\sin(-\alpha) = -\sin\alpha$ (奇函数)
-
$\cos(-\alpha) = \cos\alpha$ (偶函数)
-
$\tan(-\alpha) = -\tan\alpha$ (奇函数)
-
$\sin(\pi - \alpha) = \sin\alpha$
-
$\cos(\pi - \alpha) = -\cos\alpha$
-
$\tan(\pi - \alpha) = -\tan\alpha$
-
$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$
-
$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$
-
$\tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha$
-
$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$
-
$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$
-
$\tan\left(\frac{\pi}{2} + \alpha\right) = -\cot\alpha$
-
$\sin\left(\frac{3\pi}{2} - \alpha\right) = -\cos\alpha$
-
$\cos\left(\frac{3\pi}{2} - \alpha\right) = -\sin\alpha$
-
$\tan\left(\frac{3\pi}{2} - \alpha\right) = \cot\alpha$
-
$\sin\left(\frac{3\pi}{2} + \alpha\right) = -\cos\alpha$
-
$\cos\left(\frac{3\pi}{2} + \alpha\right) = \sin\alpha$
-
$\tan\left(\frac{3\pi}{2} + \alpha\right) = -\cot\alpha$
辅助角公式
将 $a\sin x + b\cos x$ 的形式化为 $A\sin(x+\phi)$ 或 $A\cos(x-\phi’)$:
$$a\sin x + b\cos x = \sqrt{a^2+b^2} \left( \frac{a}{\sqrt{a^2+b^2}}\sin x + \frac{b}{\sqrt{a^2+b^2}}\cos x \right)$$令 $\cos\phi = \frac{a}{\sqrt{a^2+b^2}}$, $\sin\phi = \frac{b}{\sqrt{a^2+b^2}}$,则 $\tan\phi = \frac{b}{a}$。
$$ a\sin x + b\cos x = \sqrt{a^2+b^2} (\cos\phi\sin x + \sin\phi\cos x) = \sqrt{a^2+b^2} \sin(x+\phi) $$其中 $\phi$ 的值由 $a, b$ 的符号决定其所在象限。
$$ a\sin x + b\cos x = \sqrt{a^2+b^2} (\sin\phi'\sin x + \cos\phi'\cos x) = \sqrt{a^2+b^2} \cos(x-\phi') $$倍角公式
$$\sin(2\alpha) = 2\sin\alpha\cos\alpha$$$$\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha$$$$\tan(2\alpha) = \frac{2\tan\alpha}{1-\tan^2\alpha}$$三倍角公式
$$\sin(3\alpha) = 3\sin\alpha - 4\sin^3\alpha$$$$\cos(3\alpha) = 4\cos^3\alpha - 3\cos\alpha$$$$\tan(3\alpha) = \frac{3\tan\alpha - \tan^3\alpha}{1 - 3\tan^2\alpha}$$半角公式、降幂公式
半角公式:
$$\sin\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$$$\cos\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$$$\tan\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = \frac{\sin\alpha}{1+\cos\alpha} = \frac{1-\cos\alpha}{\sin\alpha}$$(正负号取决于 $\frac{\alpha}{2}$ 所在的象限)
降幂公式 (由倍角公式变形得到):
$$\sin^2\alpha = \frac{1-\cos(2\alpha)}{2}$$$$\cos^2\alpha = \frac{1+\cos(2\alpha)}{2}$$$$\tan^2\alpha = \frac{1-\cos(2\alpha)}{1+\cos(2\alpha)}$$万能公式
令 $t = \tan\left(\frac{\alpha}{2}\right)$:
$$\sin\alpha = \frac{2t}{1+t^2}$$$$\cos\alpha = \frac{1-t^2}{1+t^2}$$$$\tan\alpha = \frac{2t}{1-t^2}$$和差公式
和角公式:
$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta}$$差角公式:
$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$$$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$$$\tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha\tan\beta}$$和差化积,积化和差
和差化积:
$$\sin\alpha + \sin\beta = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$$$\sin\alpha - \sin\beta = 2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$$$\cos\alpha + \cos\beta = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$$$\cos\alpha - \cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$积化和差:
$$\sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)]$$$$\cos\alpha\sin\beta = \frac{1}{2}[\sin(\alpha+\beta) - \sin(\alpha-\beta)]$$$$\cos\alpha\cos\beta = \frac{1}{2}[\cos(\alpha+\beta) + \cos(\alpha-\beta)]$$$$\sin\alpha\sin\beta = -\frac{1}{2}[\cos(\alpha+\beta) - \cos(\alpha-\beta)] = \frac{1}{2}[\cos(\alpha-\beta) - \cos(\alpha+\beta)]$$面积公式
对于三角形 $\triangle ABC$,角 $A, B, C$ 所对的边分别为 $a, b, c$,其面积 $S$:
$$S = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B$$$$S = \sqrt{p(p-a)(p-b)(p-c)} \quad (\text{海伦公式, 其中 } p = \frac{a+b+c}{2})$$$$S = \frac{abc}{4R} \quad (R \text{ 是外接圆半径})$$$$S = rp \quad (r \text{ 是内切圆半径, } p = \frac{a+b+c}{2})$$正弦定理、余弦定理
正弦定理: 在任意三角形 $\triangle ABC$ 中,角 $A, B, C$ 所对的边分别为 $a, b, c$, $R$ 为三角形外接圆的半径。
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$余弦定理: 在任意三角形 $\triangle ABC$ 中,角 $A, B, C$ 所对的边分别为 $a, b, c$。
$$a^2 = b^2 + c^2 - 2bc\cos A$$$$b^2 = a^2 + c^2 - 2ac\cos B$$$$c^2 = a^2 + b^2 - 2ab\cos C$$也可以表示为:
$$\cos A = \frac{b^2+c^2-a^2}{2bc}$$$$\cos B = \frac{a^2+c^2-b^2}{2ac}$$$$\cos C = \frac{a^2+b^2-c^2}{2ab}$$